

LEHRPLAN FÜR DAS GRUNDLAGENFACH PHYSIK

A. Stundendotation

Klasse	1.	2.	3.	4.
Wochenstunden		2	2	2

B. Didaktische Konzeption

(1) Beitrag des Faches zur gymnasialen Bildung

Der Unterricht im Grundlagenfach Physik vermittelt einen Überblick über die experimentellen und theoretischen Methoden zur Erforschung der Natur. Er ermöglicht Einblicke in die technischen Anwendungen der Physik.

Die Schülerinnen und Schüler werden befähigt, Naturphänomene und Prozesse der Technik mathematisch und sprachlich zu beschreiben. Sie lernen mit Modellvorstellungen umzugehen, in kausalen Zusammenhängen zu denken und Experimente zur Erkenntnisgewinnung einzusetzen.

Der Unterricht schafft inhaltliche und arbeitstechnische Voraussetzungen, um ein Studium aufzunehmen. Er vermittelt allgemeinbildende Aspekte und zeigt die Bedeutung von Physik und Technik für die moderne Gesellschaft auf. Er befähigt die Schülerinnen und Schüler, bei technischen Fragen sachkompetent an gesellschaftlichen und politischen Diskussionen teilzunehmen. Schliesslich gibt der Unterricht auch Einblick in die historische Entwicklung des physikalischen Denkens. Er befähigt dazu, Möglichkeiten und Grenzen der Naturwissenschaften zu erkennen.

(2) Überfachliche Kompetenzen

Das Grundlagenfach Physik fördert besonders

Reflexive Fähigkeiten

- · Hypothesen bilden und überprüfen
- · Sachverhalte auf das Wesentliche reduzieren und mathematisch formalisieren
- Grössenordnungen richtig abschätzen und Resultate auf Plausibilität prüfen

Sprachkompetenz

- · Sachverhalte verständlich formulieren und erklären
- Gesetze und Diagramme als Kommunikationsmittel sinnvoll einsetzen
- · Sich präzise in der Fachsprache ausdrücken

Methoden- und IKT-Kompetenzen

- · Experimente planvoll aufbauen und durchführen
- Messwerte manuell oder mithilfe von Rechnern auswerten

Interessen

- Neugierde für naturwissenschaftlich-technische Fragestellungen und Phänomene
- Interesse für die kulturelle Bedeutung der Technik

C. Klassen-Lehrpläne

2. Klasse

1. Lerngebiet: Grundlegende Methoden und Werkzeuge

Grobinhalte	Fachliche Kompetenzen
	Die Schülerinnen und Schüler können
 Zehnerpotenzen und Dezimal- vorsätze 	 Dezimalvorsätze in Zehnerpotenzen um- wandeln und umgekehrt.
Signifikante Ziffern	 die Genauigkeit einer Berechnung abschät- zen und Resultate mit sinnvoller Genauig- keit angeben.
 Physikalische Grössen und Einheiten 	 physikalische Grössen und Einheiten unter- scheiden.
Naturwissenschaftliche Me- thode zur Erkenntnisgewinnung	 die naturwissenschaftliche Methode zur Ge- winnung von Erkenntnissen erklären.
• Dichte	die Definitionsgleichung der Dichte angeben.
	 die Dichte einiger wichtiger Stoffe (z.B. Wasser, Luft) auswendig angeben.

2. Lerngebiet: Geometrische Optik (Technik)

Grobinhalte	Fachliche Kompetenzen
	Die Schülerinnen und Schüler können
Reflexion	 das Reflexionsgesetz in einer Konstruktion sinnvoll anwenden.
Brechung	 den Weg des Lichts bei Brechung an einer Grenzfläche bestimmen.
• Linsen	 die Ausbreitung von Lichtstrahlen durch Sammel- und Streulinse mithilfe von Brenn- weite/Brennpunkt konstruieren.
Abbildungen	 das Bild eines Objektes konstruieren und charakterisieren.
	das Bild eines Objektes berechnen.
 Anwendungen (optische Geräte) 	 die Funktionsweise optischer Geräte erklä- ren.

3. Lerngebiet: Bewegungslehre (Mechanik)

Grobinhalte	Fachliche Kompetenzen	
	Die Schülerinnen und Schüler können	

• Bewegungen mathematisch beschreiben. Geradlinige Bewegung (gleichförmig und beschleunigt) · Bewegungen messtechnisch erfassen. • aus einer Aufgabenstellung Gleichungen ableiten und lösen. • Diagramme erstellen, korrekt beschriften • *t-s-, t-v-* und *t-a-*Diagramme/ Mittlere Geschwindigkeit und und sinnvoll skalieren. Momentangeschwindigkeit • die Bedeutung der Steigung und der Fläche im *t-v*-Diagramm erklären. Freier Fall und · den freien Fall als vertikal beschleunigte Fallbeschleunigung Bewegung mathematisch und mit Diagrammen beschreiben. · kennen die Stärke der Fallbeschleunigung auf der Erdoberfläche auswendig.

4. Lerngebiet: Ursachen der Bewegung (Mechanik)

Grobinhalte	Fachliche Kompetenzen	
	Die Schülerinnen und Schüler können	
Masse und Trägheit	 den Effekt der Trägheit in Alltagssituationen erklären. 	
 Newton'sche Gesetze/ Gewichtskraft und Schwere- losigkeit/Normalkraft/Reibung 	 den Zusammenhang zwischen dem Bewe- gungszustand und den wirkenden Kräften herstellen. 	
	 den Zusammenhang zwischen der Verfor- mung und der wirkenden Kraft erklären. 	
Kräfte als Vektoren	Kräfte als vektorielle Grössen handhaben.	
Statische und dynamische An- wendungen im Alltag	in Experimenten Kräfte und ihre Wirkungen untersuchen.	

5. Lerngebiet: Erhaltungssätze (Mechanik)

Grobinhalte	Fachliche Kompetenzen
	Die Schülerinnen und Schüler können
Arbeit, Leistung, Energie	die drei Begriffe definieren.
	 die Energie in verschiedene Einheiten (J und kWh) umrechnen.
Wirkungsgrad	den Wirkungsgrad eines Gerätes ermitteln.
Energieerhaltung im abge- schlossenen System	 die Erhaltung der Energie in konkreten Situationen formulieren.

3. Klasse

1. Lerngebiet: Kreisbewegung (Mechanik)

Grobinhalte	Fachliche Kompetenzen
	Die Schülerinnen und Schüler können
 Kinematische Grössen der Kreisbewegung 	 Fachbegriffe wie Frequenz und Winkelge- schwindigkeit korrekt verwenden.
	 die Bewegung eines Körpers auf einer Kreisbahn beschreiben.
 Zentripetalbeschleunigung und -kraft 	 die Dynamik einer Kreisbewegung mithilfe der Zentripetalkraft erklären.
	 die gefundenen Gesetzmässigkeiten experimentell überprüfen.

2. Lerngebiet: Gravitation (Mechanik)

Grobinhalte	Fachliche Kompetenzen
	Die Schülerinnen und Schüler können
Weltbilder	 die Entwicklung des Weltbildes in unserem Kulturkreis beschreiben.
• Fallbeschleunigung $g(r)$	 die 1/r²-Abhängigkeit qualitativ und quantitativ erklären.
 Planetenbewegung, (Kreisbah- nen), Keplergesetze 	 die Kepler'schen Gesetze in Fragestellungen anwenden.
Gravitationsgesetz	 das Gravitationsgesetz anwenden, um Be- wegungsgrössen von Himmelskörpern zu berechnen.

3. Lerngebiet: Elektrizitätslehre (Elektromagnetismus)

Grobinhalte	Fachliche Kompetenzen
	Die Schülerinnen und Schüler können
• Ladung	bestimmen, ob ein Körper geladen ist.
Spannung, Stromstärke	 die Bedeutung von Spannung und Strom anhand einer Analogie erklären.
	 die historische und kulturelle Bedeutung der Elektrifizierung verstehen.
Ohm'scher Widerstand / Serie-	erklären, was eine Kennlinie ist.
und Parallelschaltung	Schaltungen aufbauen und ausmessen.
Elektrische Leistung	 die Ersatzwiderstände und die umgesetzte Leistung berechnen.
 Elektrisches Feld und Cou- lombgesetz 	 die Kräfte zwischen Punktladungen mithilfe des Coulombgesetzes berechnen.

- den Feldbegriff erklären.
- das elektrische Feld grafisch darstellen.

4. Lerngebiet: Magnetismus (Elektromagnetismus)

Grobinhalte	Fachliche Kompetenzen
	Die Schülerinnen und Schüler können
Permanentmagnet, Erdfeld	 das Erdmagnetfeld skizzieren.
 Durch Ströme verursachte magnetische Felder, Rechte- Hand-Regel 	 das Magnetfeld um einen stromführenden Draht bzw. in einer Spule darstellen und quantifizieren.
 Kraft auf bewegte Ladungen und Ströme, Drei-Finger-Regel 	 Betrag und Richtung der Lorentzkraft be- stimmen.
• Induktion	 ausgewählte Phänomene und technische Anwendungen (z.B. Elektromotor) qualitativ erklären.

5. Lerngebiet: Schwingungen (Periodische Vorgänge)

Grobinhalte	Fachliche Kompetenzen
	Die Schülerinnen und Schüler können
Grundbegriffe	 Fachbegriffe wie Frequenz, Winkelge- schwindigkeit, Amplitude, Phase korrekt verwenden.
Bewegungsgleichung des har-	Schwingungen in Diagrammen darstellen.
monischen Oszillators $y = \hat{y} \cdot \sin(\omega t)$	• Extrema für y, v und a in Diagrammen identifizieren und den Zusammenhang zur Differenzialrechnung verstehen.
Federpendel/Fadenpendel	 die Beziehung zwischen der Schwingungs- dauer und den charakteristischen Grössen eines Oszillators angeben.
Gedämpfte und erzwungene Schwingung	das Resonanzphänomen erklären.
	die gefundenen Gesetzmässigkeiten experimentell überprüfen.

4. Klasse

1. Lerngebiet: Wellen (Periodische Vorgänge)

Grobinhalte	Fachliche Kompetenzen	
	Die Schülerinnen und Schüler können	
Grundbegriffe	Begriffe wie Wellenlänge, Frequenz, Longitudinalwelle, Transversalwelle anwenden.	
	 den Unterschied zwischen Wellen und Schwingungen erklären. 	
Wellengeschwindigkeit	 die Licht- und die Schallgeschwindigkeit angeben. 	
Wellenphänomene	 ausgewählte Wellenphänomene mathematisch oder mit Worten beschreiben. 	

2. Lerngebiet: Wärmelehre

Grobinhalte	Fachliche Kompetenzen
	Die Schülerinnen und Schüler können
 Temperatur und deren mikro- skopische Interpretation 	 Methoden zur Temperaturmessung benen- nen.
	 Temperaturangaben von Celsius in Kelvin umrechnen und umgekehrt.
 Wärme/Innere Energie/ Hauptsätze der Wärmelehre 	 die Begriffe Wärme und Temperatur unter- scheiden.
	 die Hauptsätze der Wärmelehre in Worten oder mathematisch formulieren und in einer konkreten Situation anwenden.
Druck und Ideale Gase	 p, V und T eines idealen Gases in Bezieh- ung setzen und Zustandsänderungen in Diagrammen darstellen.
 Wärmekapazität und Phasenübergänge 	 die Grössenordnungen der Wärmemengen für Schmelzen, Erwärmen und Verdampfen von Wasser benennen.
 Wärmearbeitsmaschinen und thermodynamischer Wirkungs- grad 	 die kulturelle und historische Bedeutung der Wärmearbeitsmaschinen verstehen.
	 die Umsetzung von Wärme in Arbeit in Kreisprozessen erklären.
	 ihr physikalisches Wissen nutzen, um verantwortungsbewusst mit Ressourcen umzugehen.

3. Lerngebiet: Neuere Physik

Grobinhalte	Fachliche Kompetenzen
Kernphysik	 Die Schülerinnen und Schüler können die 3 Strahlungsarten sowie die Einheiten für die wichtigsten Messgrössen in der Do- simetrie erklären.
	 die Grenzen der klassischen Physik verstehen.
Halbleiterphysik	die besonderen Eigenschaften der Halb- leiter benennen und ihren Nutzen erklären.